Investigation of Dynamic Multivariate Process Monitoring

نویسندگان

  • Lei Xie
  • Shu-qing Wang
  • Jian-ming Zhang
چکیده

Chemical process variables are always driven by random noise and disturbances. The closed-loop control yields process measurements that are auto & cross correlated. The influence of auto & cross correlations on statistical process control (SPC) is investigated in detail. It is revealed both auto and cross correlations among the variables will cause unexpected false alarms. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto & cross correlations. Subspace identification based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modelling, SI-PCA can remove the auto & cross correlations efficiently and avoid unexpected false alarms. The application in Tennessee Eastman challenge process illustrates the advantages of the proposed approach. Copyright © 2005 IFAC Keyword: Multivariate statistical processes control (MSPC); Subspace identification, False alarms rate (FAR), Dynamic processes

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Monitoring of Multivariate Process Mean and Variability in the Presence of Measurement Error with Linearly Increasing Variance under Additive Covariate Model (RESEARCH NOTE)

In recent years, some researches have been done on simultaneous monitoring of multivariate process mean vector and covariance matrix. However, the effect of measurement error, which exists in many practical applications, on the performance of these control charts is not well studied. In this paper, the effect of measurement error with linearly increasing variance on the performance of ELR contr...

متن کامل

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

Simultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks

In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...

متن کامل

Taguchi Design optimization using multivariate process capability index

The Taguchi method is a useful technique to improve the performance of products or processes at a lower cost and in less time. This procedure can be categorized in the static and dynamic quality characteristics. The optimization of multiple responses has received increasing attention over the last few years in many manufacturing organizations.  Several approaches dealing with multiple static q...

متن کامل

Application of Multivariate Control Charts for Condition Based Maintenance

Condition monitoring is the foundation of a condition based maintenance (CBM). To relate the information obtained from the condition monitoring to the actual state of the system, it is usually required a stochastic model. On the other hand, considering the interactions and similarities that exist between CBM and statistical process control (SPC), the integrated models for CBM and SPC have been ...

متن کامل

Investigating Effect of Autocorrelation on Monitoring Multivariate Linear Profiles

Abstract Profile monitoring in statistical quality control has attracted attention of many researchers recently. A profile is a function between response variables and one or more independent variables. There have been only a limited number of researches on monitoring multivariate profiles. Indeed, monitoring correlated multivariate profiles is a new subject in the fileld of statistical proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005